
Recursion = Stack + Loop

The following might not help you write recursive functions, but it
should help you understand what happens when recursive
functions are executed. We are going to simulate recursive calls
by pushing and popping a stack.

The data on the stack will be a Frame for the current call. A frame
holds 3 kinds of data:

A. Arguments for the current call.
B. Local variables for the current call.
C. A marker I call "nextInstruction" for where to resume

executing when we return from the call.

Clicker Q: Consider a recursive function that
returns something, like

int foo(int n) {
...
int x = foo(n-1)

Where does the program return to when it has the
value of foo(n-1) ?

A. To foo(n)
B. To the middle of the line int x = foo(n-1)
C. To the line after int x = foo(n-1)
D. To the end of the program

Consider the factorial function:
public int fact(int n) {

// marker 'A'
if (n == 0)

return 1;
else {

int f = fact(n-1);
// marker 'B'
return f*n;

}
}

We do this in a while loop. If our current position is at marker 'A',
we test n for 0 and either simulate returning 1 or recurse on n-1. If
we are at marker 'B', we get the value that was just returned, save
it in the current frame's variable f, then simulate returning the
current frame's f times the current frame's n.

The only variables for our simulator are the stack, the current
position and a variable to hold the value just returned.
Everything else is save in the stack frames, so we can have
multiple copies of them.

Here are the protocols for simulating calls and returns.

TO SIMULATE A CALL: Push a new stack frame with the
arguments and the appropriate next instruction marker. Make
the current instruction marker be the start of the function.

TO SIMULATE A RETURN: Copy the nextInstruction marker from
the frame at the top of the stack. Put the value to be returned in
the return variable. Pop the stack.

For example, three lines from our factorial function are

int f = fact(n-1);
// marker 'B'
return f*n;

We will simulate the call with
Frame top = stack.top();
stack.push(new Frame(top.n-1, 'B'));
currentInstruction = 'A'

If we are at marker 'B' we first put the return value into f, then return f*N:

top.f = returnValue;
currentInstruction = top.currentInstruction;
returnValue = top.f*top.n;
stack.pop();

At the top level we push a frame with a special marker that
means "really return the return value."

static int stackFact(int n) {
Stack<Frame> stack = new Stack<Frame>();
char nextInstruction = 'A';
int returnValue=0;
stack.push(new Frame(n, 'Z'));

while (nextInstruction != 'Z') {
Frame top = stack.top();
if (nextInstruction == 'A') {

if (top.n == 0) {
nextInstruction = top.nextInstruction;
returnValue = 1;
stack.pop();

}
else {

stack.push(new Frame(top.n-1, 'B'));
nextInstruction = 'A';

}
}

else if (nextInstruction == 'B') {
top.f = returnValue;
nextInstruction = top.nextInstruction;
returnValue = top.f*top.n;
stack.pop();

}
} // ends while(nextInstruction != 'Z') {
return returnValue;

Here is the loop for

public int Fib(int n) {
// Marker 'A'
if (n == 0)

return 0;
else if (n == 2)

return 1;
else {

int t1 = Fib(n-1);
// Marker 'B'
int t2 = Fib(n-2);
// Marker 'C'
return t1+t2;

}
}

while (nextInstruction != 'Z') {
Frame top = stack.top();
if (nextInstruction == 'A') {

if (top.n == 0) {
nextInstruction = top.nextInstruction;
returnValue = 0;
stack.pop();

}
else if (top.n == 1) {

nextInstruction = top.nextInstruction;
returnValue = 1;
stack.pop();

}
else {

stack.push(new Frame(top.n-1, 'B'));
nextInstruction = 'A';

}
}

else if (nextInstruction == 'B') {
top.t1 = returnValue;
stack.push(new Frame(top.n-2, 'C'));
nextInstruction = 'A';

}
else if (nextInstruction == 'C') {

top.t2 = returnValue;
returnValue = top.t1 + top.t2;
nextInstruction = top.nextInstruction;
stack.pop();

}
} // ends while (currentInstruction != 'Z')
return returnValue;

I will post complete programs that give stack-based
implementations of the Factorial, Fibonacci, and Towers of
Hanoi functions.

